Problem 2.11

Consider an object that is thrown vertically up with initial speed v_{o} in a linear medium.
(a) Measuring y upward from the point of release, write expressions for the object's velocity $v_{y}(t)$ and position $y(t)$. (b) Find the time for the object to reach its highest point and its position $y_{\text {max }}$ at that point. (c) Show that as the drag coefficient approaches zero, your last answer reduces to the well-known result $y_{\text {max }}=\frac{1}{2} v_{\mathrm{o}}^{2} / g$ for an object in the vacuum. [Hint: If the drag force is very small, the terminal speed is very big, so $v_{\mathrm{o}} / v_{\text {ter }}$, is very small. Use the Taylor series for the log function to approximate $\ln (1+\delta)$ by $\delta-\frac{1}{2} \delta^{2}$. (For a little more on Taylor series see Problem 2.18.)]

Solution

Part (a)
Draw a free body diagram for an object travelling upward, assuming there's only linear air resistance.

Apply Newton's second law in the y-direction to get the equation of motion, letting $v_{y}=v$.

$$
\begin{aligned}
\sum F_{y} & =m a_{y} \\
-m g-b v & =m \frac{d v}{d t}
\end{aligned}
$$

Bring the terms with v to the same side.

$$
m \frac{d v}{d t}+b v=-m g
$$

Divide both sides by m.

$$
\frac{d v}{d t}+\frac{b}{m} v=-g
$$

This is a first-order linear inhomogeneous ODE, so it can be solved by using an integrating factor.

$$
I=\exp \left(\int^{t} \frac{b}{m} d t^{\prime}\right)=e^{b t / m}
$$

Multiply both sides of the ODE by I.

$$
e^{b t / m} \frac{d v}{d t}+\frac{b}{m} e^{b t / m} v=-g e^{b t / m}
$$

The left side can be written as $\frac{d}{d t}(I v)$ by the product rule.

$$
\frac{d}{d t}\left(e^{b t / m} v\right)=-g e^{b t / m}
$$

Integrate both sides with respect to t.

$$
e^{b t / m} v=-g \frac{m}{b} e^{b t / m}+C_{1}
$$

Divide both sides by I.

$$
v(t)=-\frac{m g}{b}+C_{1} e^{-b t / m}
$$

Use the fact that the initial velocity is $v(0)=v_{\mathrm{o}}$ to determine C_{1}.

$$
v(0)=-\frac{m g}{b}+C_{1}=v_{\mathrm{o}} \quad \rightarrow \quad C_{1}=v_{\mathrm{o}}+\frac{m g}{b}
$$

Therefore, the object's velocity is

$$
\begin{gathered}
v(t)=-\frac{m g}{b}+\left(v_{\mathrm{o}}+\frac{m g}{b}\right) e^{-b t / m} \\
v(t)=-v_{\text {ter }}+\left(v_{\mathrm{o}}+v_{\text {ter }}\right) e^{-t / \tau} .
\end{gathered}
$$

Integrate this result to get the position.

$$
\begin{aligned}
y(t) & =\int v(t) d t \\
& =-\frac{m g}{b} t+\left(v_{\mathrm{o}}+\frac{m g}{b}\right)\left(-\frac{m}{b}\right) e^{-b t / m}+C_{2}
\end{aligned}
$$

Since y is measured upward from the point of release, $y=0$ at $t=0$. Use this fact to determine C_{2}.

$$
y(0)=\left(v_{\mathrm{o}}+\frac{m g}{b}\right)\left(-\frac{m}{b}\right)+C_{2}=0 \quad \rightarrow \quad C_{2}=\frac{m}{b}\left(v_{\mathrm{o}}+\frac{m g}{b}\right)
$$

Therefore, the object's position is

$$
\begin{gathered}
y(t)=-\frac{m g}{b} t+\left(v_{\mathrm{o}}+\frac{m g}{b}\right)\left(-\frac{m}{b}\right) e^{-b t / m}+\frac{m}{b}\left(v_{\mathrm{o}}+\frac{m g}{b}\right) \\
=-\frac{m g}{b} t+\frac{m}{b}\left(v_{\mathrm{o}}+\frac{m g}{b}\right)\left(1-e^{-b t / m}\right) \\
y(t)=-v_{\text {ter }} t+\tau\left(v_{\mathrm{o}}+v_{\text {ter }}\right)\left(1-e^{-t / \tau}\right) .
\end{gathered}
$$

Part (b)

The object reaches its highest point when it comes to a stop, so set $v\left(t_{\max }\right)=0$ and solve the equation for $t_{\text {max }}$ to find when this happens.

$$
\begin{aligned}
0 & =-\frac{m g}{b}+\left(v_{\mathrm{o}}+\frac{m g}{b}\right) e^{-b t_{\max } / m} \\
\frac{m g}{b} & =\left(v_{\mathrm{o}}+\frac{m g}{b}\right) e^{-b t_{\max } / m} \\
\frac{\frac{m g}{b}}{v_{\mathrm{o}}+\frac{m g}{b}} & =e^{-b t_{\max } / m} \\
\frac{m g}{b v_{\mathrm{o}}+m g} & =e^{-b t_{\max } / m} \\
\ln \frac{m g}{b v_{\mathrm{o}}+m g} & =\ln e^{-b t_{\max } / m} \\
\ln \frac{m g}{b v_{\mathrm{o}}+m g} & =-\frac{b t_{\max }}{m} \ln e \\
\ln \frac{b v_{\mathrm{o}}+m g}{m g} & =\frac{b t_{\max }}{m}
\end{aligned}
$$

Therefore, the time when the object reaches its highest point is

$$
\begin{aligned}
& t_{\max }=\frac{m}{b} \ln \left(\frac{b v_{\mathrm{o}}}{m g}+1\right) \\
& t_{\max }=\tau \ln \left(\frac{v_{\mathrm{o}}}{v_{\text {ter }}}+1\right) .
\end{aligned}
$$

Plug this into the position function to determine $y_{\text {max }}$.

$$
\begin{aligned}
y_{\max } & =y\left(t_{\max }\right) \\
& =-\frac{m g}{b} t_{\max }+\frac{m}{b}\left(v_{\mathrm{o}}+\frac{m g}{b}\right)\left(1-e^{-b t_{\max } / m}\right) \\
& =-\frac{m g}{b} \frac{m}{b} \ln \left(\frac{b v_{\mathrm{o}}}{m g}+1\right)+\frac{m}{b}\left(v_{\mathrm{o}}+\frac{m g}{b}\right)\left[1-\exp \left(-\ln \frac{b v_{\mathrm{o}}+m g}{m g}\right)\right] \\
& =-\frac{m g}{b} \frac{m}{b} \ln \left(\frac{b v_{\mathrm{o}}}{m g}+1\right)+\frac{m}{b}\left(v_{\mathrm{o}}+\frac{m g}{b}\right)\left[1-\exp \left(\ln \frac{m g}{b v_{\mathrm{o}}+m g}\right)\right] \\
& =\frac{m}{b}\left[-\frac{m g}{b} \ln \left(\frac{b v_{\mathrm{o}}}{m g}+1\right)+\left(v_{\mathrm{o}}+\frac{m g}{b}\right)\left(1-\frac{\frac{m g}{b}}{v_{\mathrm{o}}+\frac{m g}{b}}\right)\right]
\end{aligned}
$$

Therefore, the object's maximum height is

$$
\begin{aligned}
y_{\max }= & \frac{m}{b}\left[-\frac{m g}{b} \ln \left(\frac{b v_{\mathrm{o}}}{m g}+1\right)+\left(v_{\mathrm{o}}+\frac{m g}{b}\right)-\frac{m g}{b}\right] \\
= & \frac{m}{b}\left[-\frac{m g}{b} \ln \left(\frac{b v_{\mathrm{o}}}{m g}+1\right)+v_{\mathrm{o}}\right] \\
& y_{\max }=\tau\left[-v_{\text {ter }} \ln \left(\frac{v_{\mathrm{o}}}{v_{\text {ter }}}+1\right)+v_{\mathrm{o}}\right] .
\end{aligned}
$$

Part (c)

If the drag coefficient b is very small, then $b v_{\mathrm{o}} /(\mathrm{mg})$ is very small as well. It's then a reasonable approximation to replace $\ln (1+x)$ with the first few terms of its Taylor series expansion about $x=0, x-x^{2} / 2$, as the higher-order terms are negligible compared to the first two.

$$
\begin{aligned}
y_{\max } & =\frac{m}{b}\left[-\frac{m g}{b} \ln \left(\frac{b v_{\mathrm{o}}}{m g}+1\right)+v_{\mathrm{o}}\right] \\
& \approx \frac{m}{b}\left\{-\frac{m g}{b}\left[\left(\frac{b v_{\mathrm{o}}}{m g}\right)-\frac{1}{2}\left(\frac{b v_{\mathrm{o}}}{m g}\right)^{2}\right]+v_{\mathrm{o}}\right\} \\
& \approx \frac{m}{b}\left(-v_{\mathrm{o}}+\frac{b v_{\mathrm{o}}^{2}}{2 m g}+v_{\mathrm{o}}\right) \\
& \approx \frac{v_{\mathrm{o}}^{2}}{2 g}
\end{aligned}
$$

